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Introduction
The nervous system and the immune system, which coevolved under selective pressures imposed by infec-
tion and tissue injury, are essential for coordinating host responses to environmental danger (1). A classic 
example of  the reciprocal interaction of  the central nervous system and the immune system is the febrile 
response orchestrated by activation of  the immune system in response to an infection (2). The nervous 
system and the immune system are integrally linked through multiple anatomic connections, the most 
notable of  which is the innervation of  lymphoid tissue (spleen, bone marrow, lymph nodes, and thymus) 
by the autonomic nervous system. The parasympathetic nervous system innervates lymphoid tissue via the 
neurotransmitter acetylcholine (ACh), and the sympathetic nervous system innervates lymphoid tissue via 
the neurotransmitter norepinephrine (3). The role of  the parasympathetic nervous system in modulating 
inflammation has been recently established in a series of  elegant studies that have identified the choliner-
gic antiinflammatory pathway, wherein peripheral afferent vagal nerves transmit danger signals from the 
periphery to integrative regions within the brain stem that reciprocally activate vagal efferent fibers that 
terminate in the spleen and other lymphoid tissues. Stimulation of  vagal efferent in the spleen results in the 
local release of  ACh that inhibits the release of  proinflammatory cytokines by macrophages (4–6).

ACh is synthesized in the cytoplasm by choline acetyltransferase (ChAT), transported into synaptic 
vesicles by vesicular ACh transporter (VAChT), and then stored in the cytosol until it is released into 
the extracellular space, where it signals through activation of  nicotinic (nAChR) or muscarinic (mAChR) 
receptors. ACh is degraded in the extracellular space by cholinesterases, which are expressed ubiquitously 
in tissues (7). Although ACh is widely recognized as a classic neurotransmitter, it has also become apparent 
that ACh is also secreted by nonneuronal cell types, where it is involved in a variety of  homeostatic cellular 
functions (8). Germane to this discussion, recent studies have shown that ACh is synthesized by cardio-
myocytes. ACh that is secreted by cardiomyocytes is cytoprotective (9–12), although the mechanism(s) for 
this cytoprotection is not well understood. Noting that neuronal ACh activated by the vagus nerve inhibits 

Whereas prior studies have demonstrated an important immunomodulatory role for the neuronal 
cholinergic system in the heart, the role of the nonneuronal cholinergic system is not well 
understood. To address the immunomodulatory role of the nonneuronal cholinergic system in 
the heart, we used a previously validated diphtheria toxin–induced (DT-induced) cardiomyocyte 
ablation model (Rosa26-DTMlc2v-Cre mice). DT-injected Rosa26-DTMlc2v-Cre mice were treated with 
diluent or pyridostigmine bromide (PYR), a reversible cholinesterase inhibitor. PYR treatment 
resulted in increased survival and decreased numbers of MHC-IIloCCR2+ macrophages in DT-
injected Rosa26-DTMlc2v-Cre mice compared with diluent-treated Rosa26-DTMlc2v-Cre mice. Importantly, 
the expression of CCL2/7 mRNA and protein was reduced in the hearts of PYR-treated mice. 
Backcrossing Rosa26-DTMlc2v-Cre mice with a transgenic mouse line (Chat-ChR2) that constitutively 
overexpresses the vesicular acetylcholine transporter (VAChT) resulted in decreased expression 
of Ccl2/7 mRNA and decreased numbers of CD68+ cells in DT-injured Rosa26-DTMlc2v-Cre/Chat-ChR2 
mouse hearts, consistent with the pharmacologic studies with PYR. In vitro studies with cultures 
of LPS-stimulated peritoneal macrophages revealed a concentration-dependent reduction in CCL2 
secretion following stimulation with acetylcholine, nicotine, and muscarine. To our knowledge, 
these findings reveal a previously unappreciated immunomodulatory role for the nonneuronal 
cholinergic system in regulating homeostatic responses in the heart following tissue injury.
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the release of  proinflammatory cytokines during sepsis (4) and that the nonneuronal cholinergic machin-
ery is present in cardiomyocytes, immune cells (13), and in endothelial cells (14), we asked whether the 
cytoprotective effects of  nonneuronal ACh in the heart were secondary, at least in part, to regulation of  the 
immune system. Here, we show that augmenting nonneuronal cholinergic signaling using either pharma-
cologic or genetic approaches confers beneficial immunomodulatory effects, by decreasing the expression 
of  CCL2/7 chemokines, as well as decreased influx of  proinflammatory CCR2+ monocytes to the heart 
following tissue injury.

Results
Treatment with pyridostigmine attenuates cardiac injury and cardiac inflammation. To study the role of  the nonneu-
ronal ACh system in modulating cardiac injury, we employed a diphtheria toxin–based (DT-based) model 
system (15), wherein the DT injection selectively ablates cardiomyocytes that have been genetically engi-
neered to express the DT receptor (Rosa26-DTMlc2v-Cre mice). The rationale for choosing a genetic model of  
cardiac injury versus more conventional pathophysiological models of  cardiac injury, such as acute coronary 
artery ligation or ischemia/reperfusion injury was 2-fold: first, thoracotomy results in dysregulation of  the 
autonomic nervous system for up to 7 days after surgery (16), and second, in preliminary control experiments 
designed to evaluate perioperative responses we observed that thoracotomy provokes a significant inflamma-
tory response in the heart for up to 5 days, in the absence of  discrete tissue injury (see Supplemental Figure 
1; supplemental material available online with this article; https://doi.org/10.1172/jci.insight.128961DS1).

Rosa26-DTMlc2v-Cre mice and littermate control (LM) mice were treated with diluent (PBS) or pyridostig-
mine bromide (PYR), which was used to inhibit cholinesterase. As shown in Figure 1A, there were no 
deaths in the diluent- and PYR-treated LM mice. In contrast, there was a striking increase in mortality 
in DT-injected Rosa26-DTMlc2v-Cre mice treated with diluent (Rosa26-DTMlc2v-Cre/PBS) that began as early 
as day 2, whereas the onset of  mortality in DT-injected PYR-treated mice (Rosa26-DTMlc2v-Cre/PYR) was 
delayed. Analysis of  the Kaplan-Meier survival curves (Figure 1A) revealed that there was a significant (P 
= 0.01) decrease in mortality in the Rosa26-DTMlc2v-Cre/PYR mice when compared with Rosa26-DTMlc2v-Cre/
PBS mice. To determine whether differences in the extent of  tissue injury were responsible for the early 
increase in mortality in the Rosa26-DTMlc2v-Cre/PBS mice, we measured the uptake of  Evans Blue dye and 
serum troponin I levels on day 3. Figure 1, B–D, shows that Evans Blue dye uptake and serum troponin 
I levels were not significantly different (P > 0.99 for both) in the Rosa26-DTMlc2v-Cre/PBS and Rosa26-DT-
Mlc2v-Cre/PYR mice, suggesting that differences in DT-mediated tissue injury were not responsible for the 
increased mortality in the Rosa26-DTMlc2v-Cre/PBS mice. In contrast to the findings obtained on day 3, there 
was a significant (P = 0.01) increase in the troponin I levels on day 5 in the Rosa26-DTMlc2v-Cre/PBS mice 
when compared with the Rosa26-DTMlc2v-Cre/PYR mice (Figure 1D), consistent with a delayed increase in 
tissue injury in the Rosa26-DTMlc2v-Cre/PBS mice.

Given the role of  ACh in modulating the immune system, we next asked whether there were differ-
ences in the inflammatory response to tissue injury in the Rosa26-DTMlc2v-Cre/PBS and Rosa26-DTMlc2v-Cre/
PYR mouse hearts. As shown in Figure 1, E and F, there was a striking (P < 0.0001) increase in the inflam-
matory infiltrate in Rosa26-DTMlc2v-Cre/PBS hearts when compared with diluent-treated LMs (LM/PBS). 
In contrast, the inflammatory score (17) was significantly (P = 0.01) decreased in the Rosa26-DTMlc2v-Cre/
PYR hearts when compared with Rosa26-DTMlc2v-Cre/PBS hearts (Figure 1, E and F), although leukocyte 
infiltration was still significantly (P = 0.03) greater than that observed in PYR-treated LMs (LM/PYR).

To begin to explore the mechanisms for the differences in inflammation in the hearts of  the Rosa26-DT-
Mlc2v-Cre/PBS and Rosa26-DTMlc2v-Cre/PYR mice, we performed transcriptional profiling on day 5 after DT 
injection. As shown in Figure 2A, 6149 transcripts were differentially regulated in Rosa26-DTMlc2v-Cre/
PBS versus LM/PBS hearts, whereas 1721 transcripts were differentially regulated in Rosa26-DTMlc2v-Cre/
PYR versus Rosa26-DTMlc2v-Cre/PBS hearts. Of  the 6149 transcripts that were differentially regulated in the 
Rosa26-DTMlc2v-Cre/PBS versus LM/PBS hearts, treatment with PYR normalized the expression of  1693 
transcripts, of  which 1113 were initially upregulated and 580 were initially downregulated. The principal 
component analysis plot illustrated in Figure 2B shows that the transcriptional profile of  the Rosa26-DT-
Mlc2v-Cre/PYR mice was intermediate between Rosa26-DTMlc2v-Cre/PBS hearts and the LM/PBS and LM/
PYR hearts, suggesting that PYR treatment resulted in partial resolution of  the dysregulated transcriptional 
profile following DT-induced cardiac injury. We next performed a KEGG pathways analysis on the 1693 
genes that were normalized (relative fold change ≥1.5, FDR < 0.05) in the PYR-treated Rosa26-DTMlc2v-Cre 
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Figure 1. Effect of pyridostigmine treatment on survival, tissue injury, and inflammation following diphtheria toxin–mediated injury. (A) Kaplan-Meier 
survival curves for diphtheria toxin–injected (DT-injected) Rosa26-DTMlc2v-Cre (Rosa26-DT) and littermate control (LM) mice treated with pyridostigmine 
(PYR) or diluent (PBS, n = 13 mice/group). (B) Representative photomicrographs of Evans Blue dye (EBD) uptake by cardiomyocytes (yellow arrowhead) on 
day 3 after DT injection in LM and Rosa26-DTMlc2v-Cre mice treated with PYR or diluent. Scale bar: 50 μm. (C) Summary of group data for EBD uptake on day 
3 after DT injection in LM and Rosa26-DTMlc2v-Cre mice treated with PYR or diluent (n = 18–29 fields obtained from 3 hearts/condition). (D) Serum troponin I 
(ng/mL) levels on day 3 and day 5 after DT injection in LM and Rosa26-DTMlc2v-Cre mice treated with PYR or diluent (n = 8–15 mice/condition). (E) Represen-
tative photomicrographs of hematoxylin and eosin–stained hearts on day 5 after DT injection in LM and Rosa26-DTMlc2v-Cre mice treated with PYR or diluent. 
Scale bar: 50 μm. (F) Group data of the inflammatory score on day 5 after DT injection in LM and Rosa26-DTMlc2v-Cre mice treated with PYR or diluent (n = 
31–32 fields obtained from 4 hearts/condition). 0, no infiltrate; 1+, infiltrates involving <25% myocardium; 2+, infiltrates involving 25%–50%; 3+, infil-
trates involving 50%–75% of the myocardium; and 4+, infiltrates involving 75%–100% of the myocardium. N.D., not detected. *P < 0.05 in comparison 
with LM/PBS and LM/PYR. P values were calculated with Gehan-Breslow-Wilcoxon test for A and 1-way ANOVA followed by the Tukey post hoc test for C, 
D, and F.
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mice, in order to ascertain which 
transcriptional networks were mod-
ulated by inhibiting acetylcholines-
terase. As shown in Figure 2C, the 
majority of  the KEGG pathways 
normalized in the Rosa26-DTMl-

c2v-Cre/PYR comprised gene families 
belonging to inflammatory signaling 
pathways. We next examined chang-
es in specific genes that were identi-
fied in the top 4 pathways that were 
most significantly regulated by PYR 
treatment. As shown by the heatmap 
in Supplemental Figure 2, all of  the 
genes that were differentially regu-
lated in the Rosa26-DTMlc2v-Cre/PBS 

hearts were members of  cytokine, cytokine receptor, chemokine, or chemokine receptor families. Moreover, 
save for 2 genes (Il15 and Ctf1), the expression levels of  all of  the dysregulated genes shown in the heatmap 
were increased in the DTMlc2v-Cre/PBS hearts and partially normalized in the Rosa26-DTMlc2v-Cre/PYR mouse 
hearts. Although we did not explore which cell types contributed to the dysregulation of  inflammatory 
genes in the Rosa26-DTMlc2v-Cre/PBS hearts, it likely reflects changes in cardiomyocytes, endothelial cells, 
and infiltrating monocytes/macrophages. Viewed together, these data show that PYR treatment downreg-
ulates inflammatory signaling pathways following tissue injury.

Morphometric and histological analysis of  PBS- and PYR-treated mouse hearts on day 5 revealed that 
both cardiac hypertrophy (Supplemental Figure 3, A and B) and cardiomyocyte cell area (Supplemental 
Figure 3, C–D) were significantly (P = 0.03 and P < 0.0001, respectively) lower in Rosa26-DTMlc2v-Cre/PYR 
hearts when compared with Rosa26-DTMlc2v-Cre/PBS mouse hearts.

Treatment with pyridostigmine decreases influx of  CCR2+ monocytes following cardiac injury. Given that PYR 
treatment reduced the infiltration of  leukocytes in the heart following DT injury, we sought to determine 
which specific immune cell types were affected. Semiquantitative immunofluorescence staining of  the heart 
on day 5 (Figure 3, A and B) showed that there was a significant (P < 0.0001) increase in the number of  CD68+ 
macrophages in the DT-treated Rosa26-DTMlc2v-Cre/PBS hearts when compared with LM/PBS hearts. Howev-

Figure 2. Transcriptional profiling of 
hearts after diphtheria toxin–mediated 
injury. (A) Venn diagram showing the 
number of transcripts that were differ-
entially regulated in Rosa26-DTMlc2v-Cre 
(Rosa26-DT) versus LM hearts treated 
with diluent (PBS) and the transcripts 
that were differentially regulated in 
Rosa26-DTMlc2v-Cre hearts that were treat-
ed with pyridostigmine (PYR) or diluent 
on day 5 after diphtheria toxin (DT) 
injection (n = 6 hearts/group). Treatment 
with PYR normalized the expression of 
1693 transcripts, of which 1113 were ini-
tially upregulated and 580 were initially 
downregulated. (B) Principal component 
analysis of changes in gene expression 
in hearts from LM and Rosa26-DTMlc2v-Cre 
mice treated with diluent or PYR. (C) 
KEGG pathway analysis of the genes 
(n = 1693) that were normalized in the 
PYR-treated Rosa26-DTMlc2v-Cre mice. Blue, 
genes downregulated by PYR; red, genes 
upregulated by PYR.
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er, the salient finding shown by Figure 3, A and B, is that the PYR treatment significantly (P = 0.002) reduced 
the number of  CD68+ cells in the Rosa26-DTMlc2v-Cre/PYR hearts when compared with Rosa26-DTMlc2v-Cre/
PBS hearts. To further explore these findings, we performed FACS analysis at day 5 after DT injection. The 
gating strategy for this FACS analysis is shown in Supplemental Figure 10. FACS analysis revealed that there 
was a significant increase in the number of  CD45+Ly6G–CD64+ cells in the DT-injected Rosa26-DTMlc2v-Cre/
PBS hearts in comparison with LM/PBS and LM/PYR hearts (P = 0.0004 and P = 0.0002, respectively, Fig-
ure 3C). However, the salient finding shown by Figure 3C is that the number of  CD45+Ly6G–CD64+ cells was 
significantly (P = 0.04) less in the Rosa26-DTMlc2v-Cre/PYR hearts when compared with that in Rosa26-DT-
Mlc2v-Cre/PBS hearts. In accordance with the findings obtained with immunofluorescence staining and FACS, 
the expression levels of  Cd68 mRNA were significantly (P = 0.0003) increased in the Rosa26-DTMlc2v-Cre/PBS 
mouse hearts when compared with LM/PBS hearts (Supplemental Figure 4A), whereas the expression levels 
of  Cd68 mRNA were significantly (P = 0.04) decreased in the Rosa26-DTMlc2v-Cre/PYR hearts when compared 
with Rosa26-DTMlc2v-Cre/PBS mouse hearts (Supplemental Figure 4A).

Both immunofluorescence staining (Supplemental Figure 5, A–B) and flow cytometry (Supplemental 
Figure 5C) showed that there was a significant (P = 0.0002 and P = 0.01) increase in Ly6G+ neutrophils in the 
DT-injured Rosa26-DTMlc2v-Cre/PBS hearts compared with LM/PBS hearts. Surprisingly, however, there was 
no significant difference in the number of  Ly6G+ cells detected by immunofluorescence (P > 0.99) or FACS 
(P = 0.82) in the DT-injured Rosa26-DTMlc2v-Cre/PYR hearts compared with Rosa26-DTMlc2v-Cre/PBS hearts 
(Supplemental Figure 5, A–C). Similarly, we observed a significant (P = 0.03) increase in CD3+ T-lympho-
cytes in the Rosa26-DTMlc2v-Cre/PBS hearts when compared with LM/PBS hearts; however, treatment with 
PYR had no significant (P > 0.99) effect on the number CD3+ T cells in the Rosa26-DTMlc2v-Cre/PYR hearts 
when compared Rosa26-DTMlc2v-Cre/PBS hearts (Supplemental Figure 5, D–E). Viewed together, these studies 
suggest that treatment with PYR selectively reduces the number of  macrophages (CD68+ and CD64+ cells) in 
DT-injured hearts, without affecting the number of  Ly6G+ neutrophils and CD3+ T cells.

Recently, we have shown that the naive adult heart is populated by MHC-IIhiCCR2– and 
MHC-IIloCCR2– embryonic-derived tissue macrophages, whereas MHC-IIloCCR2+ monocytes and 
MHC-IIhiCCR2+ monocyte-derived macrophages populate the heart rapidly following tissue injury 
(15). To determine whether PYR treatment affected the stoichiometry of  macrophage subsets in heart 
following tissue injury, we evaluated macrophage populations on day 5 after DT injection. As shown 
in Figure 3, D and E, there was a striking increase in the number of  MHC-IIhiCCR2+ (P < 0.0001) 
and MHC-IIloCCR2+ (P = 0.0001) cells in the hearts of  Rosa26-DTMlc2v-Cre/PBS mice, when compared 
with LM/PBS hearts, consistent with our previous findings (15). Remarkably, treatment with PYR 
significantly attenuated the increase in the number of  MHC-IIloCCR2+ monocytes in Rosa26-DTMl-

c2v-Cre/PYR hearts when compared with the Rosa26-DTMlc2v-Cre/PBS hearts (P = 0.01). Although there 
was a numerical decrease in the MHC-IIhiCCR2+ macrophages in the Rosa26-DTMlc2v-Cre/PYR hearts 
when compared with Rosa26-DTMlc2v-Cre/PBS hearts, these changes were not significantly different (P = 
0.22). Of  note, Ccr2 mRNA expression levels were significantly increased (P < 0.0001) in Rosa26-DT-
Mlc2v-Cre/PBS hearts in comparison with LM/PBS hearts, whereas the expression levels of  Ccr2 mRNA 
were significantly reduced (P = 0.04) in the hearts treated with PYR (Rosa26-DTMlc2v-Cre/PYR) in com-
parison with Rosa26-DTMlc2v-Cre/PBS hearts (Supplemental Figure 4B).

Mechanism for the pyridostigmine-induced decrease in monocyte-derived macrophages in DT-injured hearts. In order 
to determine the mechanism by which cholinesterase inhibition with PYR reduced the number of  MHC-IIloC-
CR2+ monocytes in the heart, we asked whether there were differences in monocyte mobilization from the 
spleen or bone marrow following cardiac injury. As shown in Figure 3F, the number of  CD45+F4/80+Ly6Ch-

iLy6G–CD3–CD19– circulating monocytes was significantly increased in the DT-injected (day 3) Rosa26-DT-
Mlc2v-Cre/PBS (P = 0.04) and Rosa26-DTMlc2v-Cre/PYR (P = 0.02) mice when compared with LM/PBS controls; 
however, the important finding shown by Figure 3F was that there was no significant (P = 0.99) difference in 
the number of  circulating monocytes between the Rosa26-DTMlc2v-Cre/PBS and Rosa26-DTMlc2v-Cre/PYR mice. 
Similarly, although there was a significant (P = 0.02) decrease in the number of  CD45+CD64+Ly6G–CD3–

CD19– splenic macrophages in the Rosa26-DTMlc2v-Cre/PBS mice when compared with LM/PBS mice (Figure 
3G), there was no significant difference (P = 0.99) in the number of  CD45+CD64+Ly6G–CD3–CD19– splen-
ic macrophages of  the Rosa26-DTMlc2v-Cre/PBS and Rosa26-DTMlc2v-Cre/PYR mice (day 3). Viewed together, 
these data suggest that PYR treatment inhibits the influx of  monocytes in DTR-injured hearts without alter-
ing the mobilization of  monocytes from the spleen and bone marrow.
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Given that the transcriptional profiling data suggested that PYR treatment significantly reduced cytokine 
and chemokine expression in the heart (Supplemental Figure 2), we asked whether PYR treatment inhibited 
the early (i.e., day 3) expression of  proinflammatory cytokines that regulate the expression of  chemokine 
and chemokine receptors. Supplemental Figure 6, A–C, shows that the expression levels of  Tnf, Il6, and Il1β 

Figure 3. PYR treatment inhibits the influx of monocytes to the heart following diphtheria toxin–mediated injury. (A) Representative immunofluorescence 
images of CD68+ cells in the hearts of diphtheria toxin–injected (DT-injected) (day 5) Rosa26-DTMlc2v-Cre (Rosa26-DT) and littermate control (LM) mice treated 
with PYR or diluent (PBS). Scale bar: 20 μm. (B) Group data for CD68+ staining in the hearts of DT-injected (day 5) Rosa26-DTMlc2v-Cre and LM mice treated with 
PYR or diluent (n = 10 myocardium sections/group obtained from 5 hearts per condition). (C) Group data for CD64+ macrophages/monocytes in the hearts of 
DT-injected (day 5) Rosa26-DTMlc2v-Cre and LM mice treated with PYR or diluent by flow cytometry (n = 7–12 hearts/condition). (D) Representative FACS analysis 
of macrophage subsets (MHC-IIhi/lo, CCR2+/–) in the hearts of DT-injected (day 5) Rosa26-DTMlc2v-Cre and LM mice treated with PYR or diluent. (E) Group data of 
macrophage subsets (MHC-IIhi/lo, CCR2+/–) in the hearts of DT-injected (day 5) Rosa26-DTMlc2v-Cre and LM mice treated with PYR or diluent (n = 7–12 hearts/con-
dition). (F) Group data for circulating F4/80+Ly6Chi monocytes in DT-injected (day 3) Rosa26-DTMlc2v-Cre and LM mice treated with PYR or diluent (n = 5–9 mice/
group). (G) Group data for CD64+ cells in the spleens of DT-injected (day 3) Rosa26-DTMlc2v-Cre and LM mice treated with PYR or diluent (n = 5–10 mice/group). *P 
< 0.05 in comparison with LM/PBS and LM/PYR. P values were calculated with 1-way ANOVA followed by the Tukey post hoc test.
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mRNA were significantly increased in the hearts of  Rosa26-DTMlc2v-Cre/PBS mice in comparison with LM/
PBS hearts (P = 0.02, P < 0.0001, and P = 0.01, respectively) and that treatment with PYR significantly 
attenuated the expression levels of  Tnf, Il6, and Il1β mRNA when compared with Rosa26-DTMlc2v-Cre/PBS 
hearts (P = 0.03, P < 0.0001, and P = 0.02, respectively). Next, we asked whether PYR treatment altered the 
expression levels of  2 chemokines released by CCR2+ cells that have been implicated in monocyte recruit-
ment, namely CCL2 (Mcp-1) and CCL7 (Mcp-3; ref. 15). Figure 4, A and B, shows that the expression levels 
of  Ccl2 (P < 0.0001) and Ccl7 (P = 0.007) mRNA increased significantly on day 3 in Rosa26-DTMlc2v-Cre/PBS 
hearts in comparison with LM/PBS hearts, whereas Ccl2 (P = 0.0004) and Ccl7 (P = 0.004) mRNA expression 
levels were significantly reduced in the hearts of  the Rosa26-DTMlc2v-Cre/PYR mice when compared with the 
hearts of  Rosa26-DTMlc2v-Cre/PBS mice. Moreover, the expression levels of  Ccl2 (P = 0.86) and Ccl7 (P = 0.98) 
mRNA in the Rosa26-DTMlc2v-Cre/PYR hearts were not significantly different from baseline values observed 
in LM/PYR hearts. Figure 4, C and D, shows that CCL2 (P = 0.0001) and CCL7 (P = 0.01) protein levels 
were both significantly increased in Rosa26-DTMlc2v-Cre/PBS hearts when compared with LM/PBS hearts and 
that protein levels of  CCL2 (P = 0.01) and CCL7 (P = 0.04) were decreased in Rosa26-DTMlc2v-Cre/PYR hearts 
compared with Rosa26-DTMlc2v-Cre/PBS hearts (Figure 4, C and D). There was a trend (P = 0.06) toward sig-
nificance in the CCL2 protein levels in Rosa26-DTMlc2v-Cre/PYR hearts when compared with LM/PYR hearts. 
On the other hand, there was no significant difference in CCL7 (P = 0.54) protein levels in native LM/PYR 
and Rosa26-DTMlc2v-Cre/PYR hearts.

Given that CCR2+ macrophages are an important source of  chemokines (15, 18), we investigated wheth-
er the decrease in myocardial levels of  CCL2/7 in PYR-treated mice was secondary to decreased chemo-
kine production by CCR2+ macrophages. Accordingly, we flow-sorted MHC-IIhiCCR2+ macrophages and 
MHC-IIloCCR2+ monocytes from Rosa26-DTMlc2v-Cre/PBS and Rosa26-DTMlc2v-Cre/PYR hearts (day 3) in 
order to assess mRNA expression levels of  Ccl2/7. As shown in Figure 4, E and F, there was a significant 
decrease in the mRNA expression levels of  Ccl2 (P = 0.03) and Ccl7 (P = 0.02) in the MHC-IIhiCCR2+ macro-
phages from the Rosa26-DTMlc2v-Cre/PYR hearts when compared with Rosa26-DTMlc2v-Cre/PBS hearts. Impor-
tantly, the mRNA expression levels of  those chemokines were not significantly different in MHC-IIloCCR2+ 
monocytes isolated from Rosa26-DTMlc2v-Cre/PBS and Rosa26-DTMlc2v-Cre/PYR hearts (P = 0.38 and P = 0.12, 
respectively, Figure 4, G and H). These data demonstrate that PYR treatment selectively decreases Ccl2 and 
Ccl7 mRNA levels in MHC-IIhiCCR2+ macrophages from DTR-injured hearts. Importantly, the difference in 
the expression of  chemokines was not secondary to a difference in the number of  macrophages and/or mono-
cytes in the heart on day 3 after DTR injury (see Supplemental Figure 7 for details).

ACh inhibits CCL2 and TNF secretion by intraperitoneal macrophages. To determine the mechanism for the 
PYR-induced decrease in CCL2/7 expression, we examined the release of  CCL2 in cultures of  LPS-stim-
ulated intraperitoneal macrophages (ipMACs), in the absence or presence of  increasing concentrations of  
ACh (10–6 to 102 μM). Treatment with ACh resulted in a significant (P = 0.03 by 1-way ANOVA, Figure 
5A) concentration-dependent decrease in CCL2 release in LPS-stimulated cultures. To determine whether 
the effects of  ACh were through simulation of  either nicotinic and/or muscarinic receptors, cultures of  
LPS-stimulated ipMACs were pretreated with increasing concentrations of  nicotine (10–6 to 102 μM) and 
muscarine (10–6 to 102 μM). As shown in Figure 5A, pretreatment with nicotine and muscarine significantly 
(P < 0.0001 and P < 0.0001 by 1-way ANOVA, respectively) inhibited CCL2 release in LPS-stimulated 
ipMACs in a concentration-dependent manner, suggesting that ACh inhibits CCL2 release through stim-
ulation of  both muscarinic and nicotinic receptors. On a molar basis, nicotine and muscarine were both 
significantly more potent with respect to inhibiting CCL2 release than ACh (P < 0.0001 for nicotine and 
muscarine by 2-way ANOVA). However, there was no significant difference (P = 0.06 by 2-way ANOVA, 
Figure 5A) in CCL2 release between the nicotine or muscarine stimulated ipMACs cultures.

Given that ACh inhibits TNF release in circulating monocytes, and that TNF provokes increased 
expression of  CCL2 (4), we asked whether ACh, nicotine, and muscarine inhibited TNF release from 
LPS-stimulated ipMACs. The important finding shown by Figure 5B is that treatment with ACh, nicotine, 
and muscarine significantly inhibited TNF release in a concentration-dependent manner (P < 0.0001 for 
each comparison). Surprisingly, on a molar basis, inhibition of  TNF secretion was not significantly differ-
ent between ACh and nicotine (P = 0.86), whereas muscarine was significantly more potent on a molar 
basis than either ACh (P = 0.0002 by 2-way ANOVA) or nicotine (P = 0.0004 by 2-way ANOVA).

To determine which muscarinic receptors were involved in LPS-induced release of  CCL2, we measured 
CCL2 release in LPS-stimulated ipMACs that were treated with muscarine, in the presence and absence of  
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Figure 4. PYR treatment inhibits the expression of CCL2 and CCL7 chemokines in the heart following diphtheria toxin–mediated injury. (A and B) Ccl2 
and Ccl7 mRNA expression in the hearts of diphtheria toxin–injected (DT-injected) (day 3) Rosa26-DTMlc2v-Cre (Rosa26-DT) and littermate control (LM) mice 
treated with PYR or diluent (PBS, n = 4–9 hearts/group). (C and D) CCL2 and CCL7 protein levels in the hearts of DT-injected (day 3) Rosa26-DTMlc2v-Cre and 
LM mice treated with PYR or diluent (n = 4–9 hearts/group). (E and F) Ccl2 and Ccl7 mRNA levels in flow-sorted MHC-IIhiCCR2+ cells isolated from DT-inject-
ed (day 3) Rosa26-DTMlc2v-Cre mice treated with PYR or diluent (n = 6–8 hearts/group). (G and H) Ccl2 and Ccl7 mRNA levels in flow-sorted MHC-IIloCCR2+ cells 
isolated from DT-injected (day 3) Rosa26-DTMlc2v-Cre mice treated with PYR or diluent (n = 6–8 hearts/group). *P < 0.05 in comparison with LM/PBS and LM/
PYR. P values were calculated with 1-way ANOVA followed by the Tukey post hoc test for A–D and Student’s t test for E–H.
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specific muscarinic receptor antagonists. In preliminary RNAseq studies (GEO accession GSE107776), we 
noted that M1 and M3 receptors were detectable in cultures of  unstimulated ipMACs, whereas M2, M4, 
and M5 receptors were not detectable. Immunofluorescence staining confirmed the expression of  M1 and 
M3 receptors in cells of  cultured ipMACs (Figure 5C). Figure 5D shows that treatment with 4-DAMP, a 
M3 receptor antagonist, significantly attenuated (P = 0.01) the inhibitory effects of  muscarine on CCL2 
release, whereas treatment with telenzepine, a M1 receptor antagonist, did not significantly attenuate (P = 
0.7) the effects of  muscarine on CCL2 secretion.

VAChT overexpression mimics the effects of  the pyridostigmine in DT-injured hearts. To confirm the results 
with pharmacological inhibition of  cholinesterase, we employed a genetic approach, wherein Rosa26-DTM-

lc2v-Cre mice were backcrossed with hypercholinergic Chat-ChR2 mice (Rosa26-DTMlc2v-Cre/Chat-ChR2). Figure 
6A shows that Vacht mRNA expression was significantly (P < 0.0001) increased in the hearts of  naive Chat-
ChR2 mice when compared with LMs (day 3), consistent with a prior report (12). Although Vacht mRNA 
levels were significantly (P < 0.0001) increased in the hearts of  the DT-injected Rosa26-DTMlc2v-Cre mice 
when compared with LMs, the levels of  mRNA were not different (P = 0.99) from Chat-ChR2 mouse hearts. 
However, the important finding shown in Figure 6A is that there was a significant approximately 3-fold 
increase (P < 0.0001) in Vacht mRNA levels in the hearts of  the DT-injected Rosa26-DTMlc2v-Cre/Chat-ChR2 
mice when compared with DTR-injected Rosa26-DTMlc2v-Cre mice, consistent with a prior study that demon-
strated that the cardiac Vacht mRNA expression is dynamic and increases with stress (19). We also per-
formed immunohistochemical staining of  VAChT protein in the hearts of  DT-injected Rosa26-DTMlc2v-Cre 
and Rosa26-DTMlc2v-Cre/Chat-ChR2 mice. As shown by the representative immunofluorescence images in 
Figure 6B and the group data in Figure 6C, there was a significant (P = 0.02) increase in VAChT protein 
in the hearts of  the Rosa26-DTMlc2v-Cre/Chat-ChR2 mice when compared with the Rosa26-DTMlc2v-Cre mice.

To determine whether increased VAChT expression reduced cardiac inflammation, we measured both 
Ccl2/7 mRNA expression on day 3 as well as the number of  CD68+ cells in LM, Chat-ChR2, Rosa26-DTMl-

c2v-Cre, and Rosa26-DTMlc2v-Cre/Chat-ChR2 mouse hearts on days 3 and 5. As shown in Figure 6, D and E, the 
expression of  Ccl2/7 mRNA was significantly increased (P = 0.0001 for both Ccl2 and Ccl7) in DT-injected 
Rosa26-DTMlc2v-Cre mouse hearts in comparison with naive LM mice (day 3). Importantly, Ccl2 and Ccl7 
mRNA expression levels were significantly reduced in the DT-injected Rosa26-DTMlc2v-Cre/Chat-ChR2 mouse 
hearts when compared with the Rosa26-DTMlc2v-Cre mouse hearts (P = 0.04 and P = 0.01, respectively). 
However, the expression levels of  Ccl2 and Ccl7 mRNA in Rosa26-DTMlc2v-Cre/Chat-ChR2 hearts remained 
significantly higher than in naive LM or Chat-ChR2 hearts (P = 0.01 and P = 0.03, respectively, Figure 
6, D and E). Analogous to the observations in the DT-injected PYR-treated Rosa26-DTMlc2v-Cre mice, Tnf 
mRNA expression was significantly (P = 0.003) reduced in the DT-treated Rosa26-DTMlc2v-Cre/Chat-ChR2 
hearts when compared with Rosa26-DTMlc2v-Cre mouse hearts (Supplemental Figure 8A). Moreover, there 
was a significant decrease (P = 0.0001, Figure 6, F and G) in the number of  CD68+ cells in the DT-injected 
Rosa26-DTMlc2v-Cre/Chat-ChR2 mouse hearts compared with Rosa26-DTMlc2v-Cre hearts on day 5. Survival 
studies were not performed on the Chat-ChR2 and Rosa26-DTMlc2v-Cre/Chat-ChR2 mice.

Importantly, the decrease in the number of  CD68+ cells in the Rosa26-DTMlc2v-Cre/Chat-ChR2 hearts on 
day 5 was not secondary to differences in the initial degree of  cell injury between Rosa26-DTMlc2v-Cre and 
Rosa26-DTMlc2v-Cre/Chat-ChR2 mice on day 3 (see Supplemental Figure 8B). Quantification of  CD68+ cells 
in the heart by immunofluorescence on day 3 after DT injection showed that there was a significant increase 
in the number of  CD68+ cells in both Rosa26-DTMlc2v-Cre (P = 0.0003) and Rosa26-DTMlc2v-Cre/Chat-ChR2 (P 
= 0.0005) hearts when compared with baseline values; however, there was no significant difference (P = 
0.9) between the Rosa26-DTMlc2v-Cre (P = 0.0003) and Rosa26-DTMlc2v-Cre/Chat-ChR hearts (Supplemental 
Figure 8, C and D). Viewed together, these data are consistent with the conclusion that increased VAChT 
expression leads to decreased numbers of  CD68+ macrophages in the heart following tissue injury (day 5), 
at least in part, through inhibition of  Ccl2/7 chemokine release (day 3).

Discussion
The results of  this study, in which we used pharmacologic and genetic strategies to increase nonneuronal 
cholinergic signaling in the heart in the setting of  tissue injury, show that nonneuronal cholinergic signal-
ing confers beneficial immunomodulatory effects in the heart by decreasing the influx of  proinflammatory 
CCR2+ monocytes. Four interrelated lines of  evidence support this statement. First, treatment of  DT-inject-
ed Rosa26-DTMlc2v-Cre mice with PYR, a cholinesterase inhibitor that does not cross the blood-brain barrier, 
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resulted in decreased mortality (Figure 1A) and decreased inflammation in the heart (Figure 1, E and F) 
when compared with diluent-treated controls. Importantly, the beneficial effects of  PYR were not secondary 
to differences in initial tissue injury in the PYR- and diluent-treated Rosa26-DTMlc2v-Cre mice (Figure 1, B–D). 
Although the mode of  DT-induced death was not explored in the present study, nonneuronal cholinergic 
signaling has been shown to exert antiarrhythmic properties in the heart (20). Second, transcriptional pro-
filing using RNAseq revealed that treatment with PYR partially attenuated the dysregulated inflammatory 
signaling pathways in DT-injured Rosa26-DTMlc2v-Cre hearts (Figure 2). As shown in Supplemental Figure 
2, PYR treatment partially normalized genes belonging to the cytokine, cytokine receptor, chemokine, and 
chemokine receptor families when compared with diluent-treated controls. Third, PYR treatment significant-
ly decreased the number of  CD68+ cells in DT-injected Rosa26-DTMlc2v-Cre hearts (Figure 3), whereas it had 
no effect on the influx of  Ly6G+ neutrophils or CD3+ T cells in DT-injected Rosa26-DTMlc2v-Cre hearts (Sup-
plemental Figure 5). Although PYR treatment had no effect on the number of  MHC-IIloCCR2–, MHC-II-
hiCCR2–, MHC-IIhiCCR2+, and MHC-IIloCCR2+ macrophages/monocytes in naive hearts, PYR treatment 

Figure 5. CCL2 and TNFs secretion in cultures of lipopolysaccharide-stimulated intraperitoneal macrophages. (A) CCL2 protein levels in the supernatant 
of cultures of lipopolysaccharide-stimulated (LPS-stimulated) intraperitoneal macrophages (ipMACs) treated in the presence and absence of increas-
ing concentrations of acetylcholine (ACh), muscarine, and nicotine (n = 3–14 biological replicates per group). (B) TNF protein levels in the supernatant of 
cultures of LPS-stimulated ipMACs treated in the presence and absence of increasing concentrations of acetylcholine, muscarine and nicotine (n = 3–9 
biological replicates per group). Data are shown as percentage of experimental control (LPS) per concentration ± SEM, analyzed by 2-way ANOVA. For A 
and B, *P < 0.05, **P < 0.01, ***P < 0.001, ****P ≤ 0.0001 in comparison with LPS. The graphs were produced using GPLOT procedure of SAS. For each 
concentration in the x axis, the graph reports on the y axis the mean analyte level expressed as percentage of control (LPS) ± SEM. (C) Representative 
immunofluorescence staining of M1 and M3 ACh receptors in cultures of ipMACs. Scale bar: 20 μm. Green, M1 or M3; blue, DAPI. (D) CCL2 protein levels in 
the supernatant of cultures of LPS-stimulated ipMACs in the presence and absence of muscarine, 4-DAMP (M3 receptor antagonist), and telenzepine (M1 
receptor antagonist, n = 9–24 biological replicates per group). Diluent, PBS. For D, *P < 0.0001 in comparison with LPS-treated cells; †P < 0.0001 in compar-
ison with diluent (nonstimulated ipMACs) and LPS-stimulated cells; ‡P < 0.01 in comparison with cells treated with 4-DAMP, muscarine, and LPS. P value 
was calculated using 2-way ANOVA using generalized linear models procedure with the option ADJUST = TUKEY to account for any missing values in A and 
B and with 1-way ANOVA followed by the Tukey post hoc test for D.
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significantly reduced the influx of  MHC-IIloCCR2+ monocytes (Figure 3) following DT-induced tissue inju-
ry. The decrease in infiltration of  MHC-IIloCCR2+ monocytes was not secondary to decreased mobilization 
of  splenic macrophages, nor decreased circulating monocytes in the PYR-treated mice (Figure 3). Remark-
ably, PYR treatment significantly reduced the expression of  proinflammatory cytokines (Tnf, Il1β, and Il6) in 
DT-injected Rosa26-DTMlc2v-Cre hearts as well as the mRNA and protein levels of  2 CC chemokines that have 

Figure 6. Effect of VAChT overexpression in the heart following diphtheria toxin–mediated injury. (A) Vacht mRNA levels in the hearts of littermate 
(LM), Chat-ChR2 mice, diphtheria toxin–injected (DT-injected) Rosa26-DTMlc2v-Cre (Rosa26-DT), and Rosa26-DTMlc2v-Cre/Chat-ChR2 mice on day 3 after DT 
injection (n = 5–10 hearts/group). (B) Representative VAChT immunofluorescence staining in DT-injected (day 3) Rosa26-DTMlc2v-Cre and Rosa26-DTMl-

c2v-Cre/Chat-ChR2 hearts. Scale bar: 20 μm. (C) Group data of VAChT expression by immunofluorescence staining in DT-injected (day 3) Rosa26-DTMlc2v-Cre and 
Rosa26-DTMlc2v-Cre/Chat-ChR2 hearts (n = 3 hearts/condition). (D and E) Ccl2 and Ccl7 mRNA expression in the hearts of DT-injected (day 3) LM, Chat-ChR2, 
Rosa26-DTMlc2v-Cre, and Rosa26-DTMlc2v-Cre/Chat-ChR2 mice (n = 3–10 hearts/group). (F) Representative immunofluorescence staining of CD68+ cells in 
DT-injected Rosa26-DTMlc2v-Cre and Rosa26-DTMlc2v-Cre/Chat-ChR2 hearts on day 5 after DT administration. Scale bar: 50 μm. (G) Group data of CD68+ cells in 
DT-injected Rosa26-DTMlc2v-Cre and Rosa26-DTMlc2v-Cre/Chat-ChR2 hearts on day 5 after DT injection (n = 4 hearts/group). *P < 0.05 in comparison with LM, 
†P < 0.05 in comparison with Rosa26-DTMlc2v-Cre/Chat-ChR2. P values were calculated with 1-way ANOVA followed by the Tukey post hoc test for A, D, and E 
and Student’s t test for C and G.
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been implicated in monocyte recruitment (Figure 4), namely CCL2 (Mcp-1) and CCL7 (Mcp-3; ref. 15, 18). 
Flow sorting of  CCR2+ cells from Rosa26-DTMlc2v-Cre/PBS and Rosa26-DTMlc2v-Cre/PYR hearts revealed that 
there was a significant decrease in the mRNA expression levels of  Ccl2 and Ccl7 in MHC-IIhiCCR2+ tissue 
macrophages (Figure 4), suggesting that increased ACh availability decreased the recruitment of  MHC-IIloC-
CR2+ monocytes, at least in part, through a mechanism that involves decreased expression of  Ccl2 and Ccl7 
by MHC-IIhiCCR2+ macrophages. However, we cannot exclude the formal possibility that the PYR-induced 
decrease in the expression of  cardiomyocyte-derived Tnf, Il1β, and Il6 may have contributed to the decrease 
in influx of  MHC-IIloCCR2+ macrophages/monocytes. In vitro studies in ipMACs demonstrated that stim-
ulation of  nicotinic receptors inhibited secretion of  CCL2, consistent with prior reports that have suggested 
that ACh exerts antiinflammatory effects through activation of  nicotinic receptors (4, 5). However, we also 
observed that stimulation of  the M3 ACh receptors on ipMACs inhibited CCL2 secretion, thus revealing an 
unexpected role for muscarinic receptors in nonneuronal cholinergic signaling in macrophages (Figure 5). 
Fourth, backcrossing Rosa26-DTMlc2v-Cre mice with a transgenic mouse line that constitutively overexpresses 
VAChT (Chat-ChR2 mice), resulted in decreased expression of  Tnf  and Ccl2/7 mRNA (day 3) as well as a 
decrease in the number of  CD68+ cells in DT-injured Rosa26-DTMlc2v-Cre/Chat-ChR2 mouse hearts (day 5), 
consistent with our observations in PYR-treated Rosa26-DTMlc2v-Cre mouse hearts (Figure 6 and Supplemental 
Figure 8). Taken together, these studies suggest that the nonneuronal cholinergic system plays an important 
immunoregulatory role in the heart, at least in part, by inhibiting the expression of  CC chemokines and 
recruitment of  CCR2+ monocytes to the injured heart.

Cholinergic signaling in the heart. Whereas sympathetic regulation of  the heart has been studied exten-
sively, far less is known with respect to the role of  cholinergic signaling in the heart, especially regarding 
the regulation of  cardiac inflammation. There are two major sources of  cholinergic signaling in heart: 
neuronal cholinergic signaling mediated by the release of  ACh from the vagus nerve, and the more recently 
described nonneuronal cholinergic system, mediated by the release of  ACh by cells that reside in the heart, 
including cardiomyocytes (11, 21).

The importance of  neuronal cholinergic signaling in the heart has been suggested by gain-of-function 
studies, which demonstrated the beneficial effects of  transection of  the vagal nerve in animal models of  
cardiac injury (22) as well as direct stimulation of  the vagus nerve in animal and human heart failure (23, 
24). Loss-of-function studies in knockout mice that lack the M2 ACh receptor demonstrated that these 
mice are more susceptible to adrenergic stress (25). It has also been proposed that the neuronal cholinergic 
system plays an important immunomodulatory role sepsis and tissue injury. Indeed, recent studies suggest 
that peripheral afferent vagal nerves transmit danger signals from the periphery (sensory arm) to integrative 
regions within the brain stem that reciprocally activate vagal efferent fibers (motor arm) that terminate in 
the spleen and other immune tissues (the cholinergic antiinflammatory pathway; ref. 26). Activation of  
splenic efferent fibers stimulates splenic CD4+ T cells to release ACh, which binds to α7 nicotinic receptors 
on splenic macrophages and inhibits TNF release (6). However, it bears emphasizing that studies that have 
employed vagal nerve stimulation or vagal nerve transection in studying the role of  neuronal cholinergic 
signaling in the heart are all confounded by the reciprocal nature of  parasympathetic and sympathetic sig-
naling the heart (27). That is, transection of  the vagal nerve results in a reflex increase in sympathetic nerve 
trafficking to the heart, which is sufficient activate a brisk immune response (28), whereas direct vagal nerve 
stimulation results in a reflex decreased in sympathetic nerve trafficking to the heart, which would decrease 
the extent of  tissue injury and immune cell activation following myocardial injury (28). Accordingly, it 
becomes difficult to separate the direct effects of  vagal nerve stimulation from the countervailing effects 
mediated by the sympathetic nervous system.

The evolutionarily conserved nonneuronal cholinergic system, which has been detected in bacteria, 
algae, protozoa, primitive plants, and invertebrate and vertebrate species predates the development of  neu-
ronal cholinergic signaling (21). Germane to this discussion, recent studies have revealed an important 
homeostatic role for nonneuronal cholinergic signaling in the heart (9, 11, 12, 29). Indeed, ACh that is 
released by cardiomyocytes attenuates the deleterious effects of  excessive adrenergic signaling (11), reduc-
es the levels of  oxidative stress in cardiomyocytes (29), and modulates energy metabolism by enhancing 
glucose utilization in the heart (22). Remarkably, however, the immunomodulatory role of  nonneuronal 
cholinergic signaling is not well understood. Indeed, a prior study in rats that underwent open chest occlu-
sion of  the LAD reported that pretreatment with PYR had no effect of  “M1” macrophages or CD4+ and 
CD8+ T cells on day 3 after infarction, whereas PYR treatment resulted in a significant increase in CD206+ 
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“M2” macrophages and CD4+CD25+FOXP3+ T lymphocytes in the infarct and periinfarct zones of  the 
PYR-treated rats (30). The authors concluded that increased cholinergic signaling resulted in increased 
recruitment of  antiinflammatory cells to the heart and that the increased influx of  FOXP3+ Tregs resulted 
in M1/M2 polarization toward increased M2 cells. These results differ from those presented herein, where 
treatment with PYR resulted in decreased recruitment of  proinflammatory CCR2+ monocytes (formerly 
referred to as M1 cells) to the heart. Although the reasons for the discrepancy between the two studies is not 
known, it may relate to differences in species chosen, experimental injury models, or differences in methods 
for characterizing the immune cell types.

Conclusion. Although prior studies have suggested an important immunomodulatory role for neuronal 
cholinergic signaling mediated by the vagus nerve (6), the immunomodulatory of  role of  the nonneuronal 
signaling is far less well-defined. Here, we show that nonneuronal cholinergic signaling confers beneficial 
immunomodulatory effects in the heart by decreasing the influx of  proinflammatory CCR2+ monocytes 
following tissue injury. However, these studies do not exclude a potential role for the neuronal cholinergic 
system in terms of  modulating inflammatory responses following tissue injury. Our findings with respect to 
the immunomodulatory role of  nonneuronal ACh signaling in the heart may have therapeutic import, giv-
en that treatment with anticholinesterase inhibitors decreased the risk of  myocardial infarction and death 
in patients with Alzheimer’s disease (31). Apart from the potential therapeutic implications of  our findings, 
this study raises important questions with respect to the physiological role of  neuronal and nonneuronal 
cholinergic systems in the heart. While the extant literature clearly suggests that the cholinergic antiinflam-
matory pathway acts reflexively to dampen the levels inflammatory mediators in the periphery, two distinct 
lines of  evidence suggest that neuronal cholinergic system is less important in terms of  modulating local 
immune responses in myocardial tissue. First, in contrast to the extensive sympathetic innervation of  the 
heart, parasympathetic innervation of  the heart is comparatively less and is greater in atrial than in ventric-
ular tissue (32). Second, prior studies have shown that immune cells release preformed ACh through activa-
tion of  Toll-like receptors, which we and others have shown are stimulated by DAMPs released by necrotic 
cardiomyocytes (13, 33). Thus, the parasympathetic nervous system is not necessarily required for mediat-
ing local antiinflammatory responses in the heart. Viewed together, these observations suggest the intrigu-
ing possibility that the nonneuronal cholinergic system, analogous to the innate immune system, may act 
as an “early warning” system that modulates local inflammatory responses to tissue injury in the heart, 
whereas the neuronal cholinergic system, which links the parasympathetic autonomic nervous system with 
peripheral lymphoid tissues, may serve to regulate systemic inflammatory responses by activating adaptive 
immune cells residing in lymphoid tissues. Given the recent interest in modulating inflammatory responses 
through implantable nerve stimulators (“bioelectric medicine”; ref. 34), as well as drugs that modulate 
α7nAChR signaling, it will be important to clarify how the neuronal and nonneuronal cholinergic systems 
interact in order to develop effective treatment strategies designed to target the cardio-neuro-immune axis.

Methods

Transgenic mouse lines
The DT-based mouse model for selectively ablating cardiomyocytes has been described previously (15). 
Briefly, Mlc2v-Cre mice (C57BL/6J, The Jackson Laboratory) were crossed to Rosa26-DT mice (C57BL/6J) 
to generate lines of  Rosa26-DTMlc2v-Cre mice. Transgenic mice (B6.Cg-Tg[Chat-COP4*H134R/EYFP,Sl-
c18a3)6Gfng/J; ref. 35]) overexpressing the channelrhodopsin-2 (ChR2) gene under control of  the ChAT gene 
(referred to herein as Chat-ChR2 mice) were provided by Marco Prado (Robarts Research Institute, University 
of  Western Ontario, London, Ontario, Canada). Because the locus for the VAChT lies between the first and 
second introns of  the ChAT gene, Chat-ChR2–transgenic mice overexpress both VAChT mRNA and protein 
(36). Moreover, prior studies have shown that VAChT protein levels are increased in cardiomyocytes and that 
ACh secretion is also increased in cardiac tissue isolated from the Chat-ChR2–transgenic mice (12).

To determine whether systemic overexpression of  VAChT would attenuate the effects of  DT-mediated 
cardiac injury in Rosa26-DTMlc2v-Cre mice, we first backcrossed Mlc2v-Cre+/– and Chat-ChR2 +/– mice. The resul-
tant double-transgenic male mice (Mlc2v-Cre+/–/Chat-ChR2+/–) were then backcrossed with female Rosa26-DT 
mice, which resulted in 4 lines of  mice in the F1 generation: LM (Rosa26-DTMlc2v-Cre –/–, ChAT.ChR2–/–), Chat-
ChR2 (Rosa26-DTMlc2v-Cre –/–, ChAT.ChR2+/–), Rosa26-DTMlc2v-Cre (Rosa26-DTMlc2v-Cre +/–, ChAT-ChR2–/–), and 
Rosa26-DTMlc2v-Cre/ChAT-ChR2 (Rosa26-DTMlc2v-Cre +/–, ChAT-ChR2+/–). The F1 generation was employed for all 
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the experiments described herein. Adult mice, age 8–10 weeks, were used for all studies. The mouse colonies 
were maintained in a pathogen-free environment and were fed pellet food and water ad libitum in accordance 
with NIH guidelines. Experiments were performed according to approved animal protocols from the Institu-
tional Animal Care and Use Committee at Washington University School of  Medicine.

Cardiomyocyte ablation
To induce cardiomyocyte cell death, mice were injected with DT (2.5 μg/kg, intraperitoneally). In pre-
liminary studies, we determined that the response to a single injection of  DT resulted in variability in the 
amount of  tissue injury, whereas the administration of  DT on 2 consecutive days resulted in a more con-
sistent tissue injury. Accordingly, for the studies described herein, cardiomyocyte ablation was achieved by 
injecting DT on 2 consecutive days (day 0 and day 1). LMs were also injected with DT on day 0 and day 1. 
The animals were sacrificed on day 3 and day 5 after DT injection.

Treatment with pyridostigmine
Mice were treated with diluent or PYR for 7 days prior to DT injection using an osmotic minipump and 
then for another 3–5 days after DT injection. Briefly, ALZET mini-pumps (model 1002) were filled with 
endotoxin-free phosphate PBS (MilliporeSigma) or PYR (MilliporeSigma, 3 mg/kg/d; ref. 19). The pumps 
were implanted subcutaneously 1 week prior to DT injection. Surgery was performed according to the 
guidelines issued by the Animal Studies Committee Policy of  Washington University School of  Medicine.

Assessment of myocardial injury after DT injection
We used Evans Blue dye (MilliporeSigma) uptake and serum troponin I levels to assess the degree of  
tissue injury following DT injection. Evans blue dye uptake was assessed on day 3 after DT injection, as 
described previously (37). Hearts were examined at the level of  the papillary muscle (×20 magnification) 
using ImageJ software (NIH). Data are expressed as the percentage area of  the myocardium with red fluo-
rescence. Serum troponin I levels were measured by mandibular bleeding on day 3 and 5 after DT injection 
(38). Troponin levels <0.03 were considered nondetectable.

Gravimetric and histological analysis. Mice were euthanized 3–5 days after DT injection, and the hearts 
were removed and weighed to determine the heart-weight-to-body-weight ratio. Hearts were processed, 
paraffin-embedded, and stained with hematoxylin and eosin as described previously (39). To evaluate 
myocyte size, cardiac-fixed frozen sections (10 μm) were stained with fluorescent rhodamine–conjugated 
wheat germ agglutinin at 5 μg/mL in 1% BSA, 1× TBS (Vector Laboratories). Fluorescence was visualized 
using a Zeiss confocal microscope (LSM 700), and digital images were analyzed with Axiovision software 
(Zeiss), as previously described (39).

RNA extraction, microarray analysis, and RT-qPCR
Transcriptional profiling of  hearts. We performed transcriptional profiling of  hearts (n = 6/condition) from LM 
mice treated with diluent (LM/PBS) or PYR (LM/PYR) as well as DT-injected Rosa26-DTMlc2v-Cre mice treat-
ed with diluent (Rosa26-DTMlc2v-Cre/PBS) or PYR (Rosa26-DTMlc2v-Cre/PYR). Briefly, RNA was isolated using 
TRIzol (Invitrogen) according to the manufacturer’s suggestions. The Dynabead mRNA Purification System 
(Invitrogen) was used to generate RNAseq libraries as previously described (40). RNAseq was performed 
using an Illumina HiSeq3000 machine (single end, 50 reads) at the Washington University Genome Technol-
ogy Access Center. Sequence alignment was obtained through Tophat software (41). Gene-level quantifica-
tion was performed using HTSeq (version 0.5.1; ref. 42), in which we obtained an average of  1.3 × 107 total 
feature-assigned reads per sample. The transcripts were filtered (0.5 cpm and present in at least 50% of the 
samples/group), yielding a total of  15,140 transcripts that were classified as detectable. The data are avail-
able on the NCBI GEO repository, accession GSE116988. Following normalization for library depth (43), a 
principal component analysis was performed using Partek Genomics Suite 7.0. The limma-voom procedure 
was used to identify mRNAs with differential expression between experimental conditions (44). We generated 
lists of  genes that were upregulated following DT injury and normalized by PYR treatment by selecting genes 
whose expression levels were significantly (fold change ≥1.5 and FDR <0.05) altered following DT injury 
in Rosa26-DTMlc2v-Cre/PBS hearts compared with LM/PBS hearts and that were normalized in DT-injected 
Rosa26-DTMlc2v-Cre mice treated with PYR compared with DT-injected Rosa26-DTMlc2v-Cre mice treated with 
diluent. KEGG pathway analysis was performed on mRNAs with greater than 1.5-fold change in expres-
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sion level between experimental groups using the appropriate functional annotation module within the 2017 
release of  the NIH online resource DAVID (https://david.ncifcrf.gov/summary.jsp). Enriched pathways 
were accepted at FDR <0.05 (Benjamini-Hochberg correction procedure). For each pathway, we determined 
the number of  genes that were either downregulated or upregulated in Rosa26-DTMlc2v-Cre/PBS hearts versus 
LM/PBS hearts and Rosa26-DTMlc2v-Cre/PYR versus Rosa26-DTMlc2v-Cre/PBS hearts. Heatmaps were generat-
ed for genes in the most significantly upregulated top 4 KEGG pathways.

Real-time quantitative PCR. Total RNA was isolated from flash-frozen mouse hearts. The ventricles were 
homogenized with magnetic beads in 1 mL of  TRIzol (Invitrogen). The PureLink RNA Mini kit (Invitro-
gen) was used to perform the RNA extraction. cDNA was synthesized using the SuperScript III First-Strand 
Synthesis System from Invitrogen. RT-PCR (real-time PCR) was performed in a QuantStudio3 Real-Time 
PCR machine (Thermo Fisher Scientific). Quantitative real-time PCR was performed using commercially 
available predesigned primers for SYBR green–based reactions (Cd68, Ccr2, Tnf, Il6, Il1-β, Ccl2, Ccl7, and 
Rplp0 primers were obtained from Integrated DNA Technologies) or TaqMan-based detections (VAChT, 
Applied Biosystems, see Supplemental Table 1 for details). Relative quantification was performed using 
expression levels of  Rplp0 as a reference.

Assessment of myocardial inflammation
Myocardial inflammation was assessed by quantifying infiltrating leukocyte subsets using immunofluores-
cence staining, hematoxylin and eosin staining, and flow cytometry (FACS).

Immunofluorescence. Hearts were fixed in 4% paraformaldehyde for 48 hours and then transferred to 30% 
sucrose for 24 hours prior to embedding in OCT and flash freezing. Prior to immunostaining, frozen sections 
were washed briefly in PBS and then blocked in 3% BSA/5% horse serum. Sections were stained with prima-
ry antibodies (see Supplemental Table 2 for details) to CD68 (macrophages) or Ly6G (neutrophils) followed 
by Alexa Fluor 555–conjugated secondary antibody incubation (A21434, Thermo Fisher Scientific) or with 
a FITC-conjugated antibody to CD3 (T cells). Fluorescence was visualized via ×10 tile scanning of  the entire 
heart at the midpapillary level using a Zeiss confocal microscope (LSM 700). Images (~70–130 per section) 
were stitched together using the ZEN software from Zeiss to form whole midpapillary section images, as 
described previously (see Supplemental Figure 9 and ref. 39). The extent of  inflammation was measured 
on day 3 by enumerating the total number of  CD68+DAPI+ cells within a midpapillary myocardial slice, 
using ImageJ software (NIH). Because the extent of  inflammation on day 5 precluded counting of  individual 
CD68+DAPI+ cells, we used ImageJ to measure fluorescent intensity (above background) within a midpap-
illary myocardial slice and then divided the area of  fluorescent intensity by the total area of  the myocardial 
slice. Data are expressed as the percentage of  inflammatory infiltrate within the myocardium.

Representative pictures were taken at ×10 or ×20 magnification.
Hematoxylin and eosin staining and myocardial inflammatory score. Myocardial inflammation was assessed 

in myocardial sections that had been stained with hematoxylin and eosin. The degree of  myocardial inflam-
mation was scored semiquantitatively in the following manner: 0, no infiltrate; 1+, infiltrates involving 
<25% myocardium; 2+, infiltrates involving 25%–50%; 3+, infiltrates involving 50%–75% of  the myocardi-
um; and 4+, infiltrates involving 75%–100% of  the myocardium, as described previously (17).

ELISA. Cardiac tissue lysates were obtained from diluent- or PYR-treated LMs and Rosa26-DTMlc2vCre 
mice. Briefly, cardiac tissue was homogenized in tissue lysate buffer: 0.5% IGEPAL (MilliporeSigma), 
0.5% sodium deoxycholate (Calbiochem), 0.1% sodium dodecyl sulfate (MilliporeSigma), 50 mM Tris-
HCl (MilliporeSigma), and 150 mM NaCl (MilliporeSigma), pH 8.00. Protease and phosphatase inhibi-
tors were used to prevent degradation of  proteins. A TissueLyser LT (Qiagen) and Stainless Steel Beads 
(Qiagen) were used to homogenize the samples at 50 oscillations/s (5–10 minutes). Protein levels of  CCL2 
(Mcp-1) and CCL7 (Mcp-3) were determined by ELISA, using a murine Mcp-1 ELISA (BD OptEIA) and 
a Mcp-3 murine instant ELISA (Thermo Fisher Scientific), respectively. Final values were expressed as pg/
mg of  cardiac tissue. Cardiac extracts from LM mice did not show detectable levels of  CCL2. For statistical 
purposes, a value of  0 was assigned to samples that were not detectable.

Flow cytometry. Cardiac tissue was digested as previously described (15). Cells were resuspended and 
stained with antibodies (see Supplemental Table 3) for 40–60 minutes at 4°C and washed twice with FACS 
buffer prior to analysis. Compensation controls were generated using single color control samples from 
stained splenocytes or UltraComp ebeads (Invitrogen). Data were acquired using BD LSR II, BD LSR-
Fortessa, and BD LSRFortessa X-20 analyzers at the Washington University Department of  Pathology 
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Flow Cytometry and Sorting Core. The gating strategy used has been previously described (see Supplemen-
tal Figure 10 and refs. 15, 38). The data obtained by FACS were obtained from a minimum of  3 indepen-
dent experiments, and the group data are expressed as number of  cells/mg of  tissue.

Isolation of  leukocytes from the blood and spleen. Blood obtained by mandibular bleeding was collected 
into tubes containing 100 mM EDTA solution, red blood cells were lysed using the PharmLyse 1× (BD 
Pharmingen), and the remaining cells were resuspended in FACS buffer. For analysis of  blood, 100,000 
events were collected in the cytometer per sample. Data are shown as the number of  Ly6Chi cells per 
100,000 events. Spleens were removed and minced using 40-μm filters in Hank’s buffered saline solution as 
described previously (45). Red blood cells were lysed using Ammonium-Chloride-Potassium Lysis Buffer 
(Fisher Life Technologies), and the remaining cells were resuspended in FACS buffer. Staining, compen-
sation controls, and acquisition were as described above. T cells, B cells, and neutrophils in the blood and 
spleen were identified using CD3, CD19, and Ly6G antibodies (for details, see Supplemental Table 3).

Cell sorting and qRT-PCR. Sorting of  CD45+Ly6G–CD64+CCR2+MHC-IIhi and CD45+Ly6G–CD64+C-
CR2+MHC-IIlo cells from the hearts of  Rosa26-DTMlc2v-Cre/PBS or Rosa26-DTMlc2v-Cre/PBS mice (day 3 after 
DT injection) was performed as described previously (15), using a FACS Aria flow cytometer (BD) at the 
Washington University Flow Cytometry and Sorting Core. Briefly, CCR2+MHC-IIhi and CCR2+MHC-IIlo 
cells were collected in lysis buffer, and RNA was extracted using the Zymo Research QuickRNA Micro-
Prep (Zymo Research), according to the manufacturer’s specifications. RNA was eluted in 11 μL RNAse/
DNAse-free water, and 10 μL was used for cDNA synthesis (Maxima First Strand cDNA Synthesis kit for 
RT-PCR, Thermo Fisher Scientific). Quantitative reverse transcription–PCR (RT-PCR) was performed in a 
QuantStudio3 Real-Time PCR machine (Thermo Fisher Scientific). TaqMan probes for Ccl2 and Ccl7 were 
used (for details, see Supplemental Table 1). Gapdh was used as a normalization control.

ipMACs
Macrophages (referred to as ipMACs) were harvested from the peritoneal cavity of  thioglycolate-stimu-
lated C57BL6/J mice, as described previously (38). Cultures of  ipMACs were preincubated for 30 minutes 
with diluent or increasing concentrations (10–6 μM to 102 μM) of  ACh (MilliporeSigma), muscarine (Toc-
ris) or nicotine (Tocris), prior to stimulation with 100 ng/mL LPS (LPS-EB Ultrapure; InvivoGen). PYR 
(1 mM) was added to the cultures of  ACh-treated ipMACs in order to prevent ACh degradation by cholin-
esterase. Drugs were diluted in endotoxin-free PBS for all experiments. The supernatants from the ipMAC 
cultures were collected after 7 hours and 30 minutes following LPS stimulation, and the levels of  secreted 
CCL2 (MCP-1) and TNF were determined by ELISA, using a commercially available murine Mcp-1 Kit 
(BD OptEIA) and TNF kit (BD OptEIA). Data (n = at least 3 independent experiments) are expressed as 
a percentage of  the maximum release of  CCL2 or TNF in LPS-treated ipMACs. mACh receptors are G 
protein–coupled receptors that can be classified into 5 subtypes, M1–M5. Although mACh receptors are 
activated by the same ACh ligand, the distribution and role of  mACh receptors is cell-type dependent 
(46). Plated ipMACs were stained with either M1 or M3 primary antibodies (see Supplemental Table 2 
for details) followed by staining with Alexa Fluor 488–conjugated secondary antibody (A11034, Ther-
mo Fisher Scientific). DAPI was used to stain the nucleus, and images were acquired in a Zeiss confocal 
microscope (LSM 700). To investigate the role of  M1 and M3 ACh receptors, we preincubated cultures of  
LPS-stimulated ipMACs with 1 μM Telenzepine (1 μM, Tocris), a selective M1 inhibitor, or 1 μM 4-DAMP 
(1,1-dimethyl-4-diphenylacetoxypiperidinium iodide; Tocris), a selective inhibitor of  the M3 receptor, for 
20 minutes before treatment with 0.1 μM muscarine.

Statistics
All results are presented as mean ± SEM. The Kaplan-Meier cumulative survival curves were analyzed 
using the Gehan-Breslo-Wilcoxon test. Statistical comparisons were performed using 2-tailed Student’s t 
test when 2 groups were analyzed or 1-way ANOVA followed by Tukey post hoc testing, where appropri-
ate. Statistical analyses of  LPS-stimulated ipMACs treated with different concentrations of  ACh, muscar-
ine, and nicotine were performed using 1-way or 2-way ANOVA using generalized linear models procedure 
with the option ADJUST = TUKEY to account for any missing values. Data were analyzed with Graph-
Pad Prism version 7.04 or SAS version 9.4 in Windows version 10. Results were considered statistically 
significant when they passed a threshold of  P < 0.05.
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